A Brief about Media Filtration !!
TABLE OF CONTENTS

- About us ..3
- Product Portfolio ..8
- Introduction of Filtration ...14
- Type of Media filtration ..15
- Working Mechanism ..17
- Working Philosophy ...19
- Filter Media & Effectiveness ..23
- Properties Of Typical Granular Filter Media25
- Work Shop & Fabrication ..27
- Actual Fabrication Photographs ..30
- Our office ..31
Shubham Inc. is the leading EPC contractor of Water and Sewage Water Treatment Plants. We use the best-in-class technology and cutting-edge tools to foster high-quality, sustainable, community-level water supply projects.

We design, engineer, and deliver the most innovative, cost-effective solutions for managing your most challenging water woes!
Product Portfolio

Membrane and separation
- Reverse Osmosis Plant
- UF Plants

Media Filters
- Activated Carbon Filters
- Dual Media Filters
- Multigrade Filters
- Pressure Sand Filters
- Side Stream Filters

ION exchange
- DM Plants
- Softening Plants
- Mixed Bed units

Waste Water Treatment
- Septic Tanks
- **Sewage Treatment Plants** [Civil & Modular]
 - Bio Accelerator 360°™
 - Electra Rapid™
 - Bio Memclean™
 - Bio Synthesis
 - **Effluent Treatment Plant** (ETP)
 - **Grey Water Treatment** (GWT)
 - Laundry Water treatment

- Swimming Pool
- Operation & Maintenance
Filtration

The process of passing water through a bed of material to remove suspended impurities from water and treated waste water. Variety of media are been used for water purification and recognized by different names.

Depending upon the application and requirements, media filter use variety of media to remove contaminants. Flirtation system can be classified according to ...

- Direction of Flow
- Types of Filter media or bed
- Driving Force
- Intend to remove TSS & Turbidity from Water.
- A polishing solid / liquid separation step.

Other Impact
- Bio Degradation.
- Organic adsorption (especially to GAC)
- Mn and Fe adsorption.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Advantages</th>
</tr>
</thead>
</table>
| River Water Treatment | • Enhance appearance of water
 | • Adhere to drinking water norms |
| Swimming pool | Improve appearance and clarity of water |
| Cooling Water Filtration | Improve efficiency & life of cooling tower leads to Low OPEX. |
| Waste Water Treatment | ▪ Removal of TSS and Turbidity make water suitable for recycling application. |
| | ▪ Particulate BOD and COD also removed by filtration. |
| | ▪ Carbon adsorption can reduce dissolved BOD and COD up to 40%. |
| RO pre treatment | ▪ SDI reduction enhance life span of RO membrane. |
| | ▪ Biological adsorption prevent bio-fouling of membranes |
| | ▪ Adsorption of free chlorine by Carbon prevent membranes from chemical fouling. |
| Process Water Treatment | ▪ Improve efficiency of water base applications. |
| | ▪ Reduce frequency of Shut down which lead to high production at lower operating cost. |
Filters by Nature

Media Filters
- Pressure sand Filter
- Dual Media Filter
- Multi Media Filter
- Carbon Filter

Flow
- Up Flow
- Down Flow

Force
- Gravity Filter
- Pressure Filter
Media Filters

- Activated Carbon Filters
- Dual Media Filters
- Multigrade Filters
- Pressure Sand & Side Stream Filters
Filter by Flow

- Up flow
- Down Flow
Filter by Force

- Gravity Filter
- Pressure Filter
Pressure Sand Filters

Consist of Single media / Mono Media

- Silica Quartz Fine Sand used for efficient filtration
- Quality Sand media - as per IS code.
- Supporting Layers of gravels and pebbles.
- Bed depth 700 MM to 1200 MM
- Maximum Inlet Total Suspended Solid - < 50 Mg/L
- Filter Water outlet – 1 – 5 Mg/L
- Service Velocity – 8 - 12M/Hr. Maximum
- Backwash velocity 20 - 36 M/Hr. Maximum
- Air scouring available for high flow pressure vessel
- Filtration rating up to 20 – 40 Microns
Dual Media Filter

Consist of Dual media (Silica Sand + Anthracite)

- Combination of Sand and Anthracite provide more area & efficient filtration.
- Supported by of gravels and pebbles at bottom.
- Sand Depth 400 to 700 MM and Anthracite 200 to 500 MM
- Maximum Inlet Total Suspended Solid - < 50 Mg/L
- Filter Water outlet – 1 – 5 Mg/L
- Service Velocity – 15 – 20 M/Hr Maximum.
- Backwash Velocity – 25 – 36 M/Hr.
- Filtration Up to 20 - 40 Micron
Multi Media Filter

Consist of Multi media (Sand + Anthracite + Fine Sand + Garnet)

- Combination of Sand, Anthracite, fine Sand and garnet provide more area & efficient multi level filtration at high velocity.
- More and very efficient filtration area
- Bed Depth equally distributed filter media in multiple layers.
- Maximum Inlet Total Suspended Solid - < 75 Mg/L
- Filter Water outlet – 1 – 5 Mg/L
- Velocity across the Filter – 15 – 25 M/Hr Maximum.
- Filtration Up to 20 Micron
Activated Carbon Filters

Consist of activated carbon

- Single layer of activated carbon supported by gravels and pebbles at bottom
- Coconut shell carbon and coal based carbon used for multiple application.
- Adsorption efficiency – Up to 90%
- Chlorine, Color and Odor removal – 85 to 90%
- EBCT – 2 to 30 Minute
- Bed depth – varies from 400 to 1200 MM
Removal Processes

- Sedimentation on media.
- Adsorption – The collection of a gas, liquid or dissolved substance on the surface and interface zone of another material.
- Biological action.
- Absorption – The taking in or soaking up of one substance into the body of another by molecular or chemical action.
- Straining – The removal of particulates by trapping in the open spaces between the grains of the media.
Filtration Mechanisms

Physical and Chemical Process

Based upon

- Chemical characteristics of the water
- Nature of suspended material
- Types and degree of pretreatment
- Filter type and operation
Filters In Operation

Multimedia Filter in Operation

Feed

Particles Trapped in Sand

Gravel Bed

Filtrate
Filters In Backwash

Multimedia Filter During Backwash

- Released Particles
- Gravel Bed
- Backwash Water

Drain
Expanded Bed
Filtration is the physical trapping of an impurity by any media.

Various type of filtration

- Surface Filtration - Occlusion
- Depth Filtration - Occlusion
- Adsorption Filtration e.g. Organics removal by Activated Carbon.
Filtration Fundamentals

For Big Void Space the Pore Size is large and therefore poor Filtration.

For small Void Space the Pore Size is small and therefore good Filtration.
The Pressure Drop across the Coarse Media shall be lower in comparison to the fine media.

Further, Fine Media will arrest most impurities at the surface, but the Coarse Media will allow to get some in its depth.
Comparison

Fine
- Higher Pressure Drop
- Low Rate of Filtration
- Fine Quality
- Surface Filtration
- Small Bed Depth
- 16 + 32 Mesh BS

Coarse
- Lower Pressure Drop
- High Rate of Filtration
- Poor Quality
- Depth Filtration
- Higher Bed Depth
- 24 m3/h.m2
- 9 m3/h.m2

Rate of Filtration
- 9 – 30 m3/h.m2

Backwash
- 24 m3/h.m2 with Air Blower (Only for Surface filtration)
- 40 m3/h.m2 otherwise
Let’s Play a bit – an Experiment

Let’s visualize the process:

- **Delta P**: The pressure difference.
- **Water Velocity**: The velocity of water, measured in M³/h.m².
- **Fluidization**: The process where particles are suspended in a fluid.
- **Elutriation**: The process of separating particles based on size.

The graph on the right shows the relationship between Delta P and Water Velocity, illustrating how these parameters change with the process conditions.
<table>
<thead>
<tr>
<th>MEDIUM</th>
<th>DENSITY kg/m³</th>
<th>EFFECTIVE SIZE mm</th>
<th>UNIFORMITY COEFFICIENT</th>
<th>PRIMARY FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica sand</td>
<td>1600 - 1700</td>
<td>16 – 32 Mesh</td>
<td>1.5 – 1.7</td>
<td>Suspended solids removal/ multi-media filtration</td>
</tr>
<tr>
<td>Manganese greensand</td>
<td>2250</td>
<td>0.6 to 1.2 mm</td>
<td>1.6</td>
<td>Iron, manganese, hydrogen sulfide reduction</td>
</tr>
<tr>
<td>Calcite (calcium carbonate)</td>
<td>1600</td>
<td>0.8 – 1.1</td>
<td>-</td>
<td>Acid neutralization</td>
</tr>
<tr>
<td>Magnesia</td>
<td>1440</td>
<td>1.3</td>
<td>1.5</td>
<td>Acid neutralization</td>
</tr>
<tr>
<td>Granular activated carbon</td>
<td>500 - 700</td>
<td>0.8 to 1.6 mm</td>
<td>1.6 – 1.8</td>
<td>Adsorption of chlorine, other taste and odor, some organic reduction & hydrocarbons</td>
</tr>
<tr>
<td>Anthracite</td>
<td>880</td>
<td>0.6 – 1.2</td>
<td>1.4 – 1.7</td>
<td>Multi-media filtration/ suspended solids removal, oil removal</td>
</tr>
<tr>
<td>TSS/Turbidity, Iron, Oil, Arsenic, Fluoride</td>
<td>Preferable units</td>
<td>Filtration velocity m/h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 15 ppm</td>
<td>Pressure Sand Filters</td>
<td>16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25 ppm</td>
<td>PSF or MGF</td>
<td>12 for PSF 24 for MGF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 50 ppm</td>
<td>MGF or DMF</td>
<td>16 for MGF 24 for DMF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 75 ppm</td>
<td>DMF</td>
<td>16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 75 ppm</td>
<td>Sedimentation/Clarification followed by filtration system</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Properties Of Typical Granular Filter Media

<table>
<thead>
<tr>
<th>MEDIUM</th>
<th>DENSITY kg/m³</th>
<th>EFFECTIVE SIZE mm</th>
<th>UNIFORMITY COEFFICIENT</th>
<th>PRIMARY FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese dioxide</td>
<td>1800</td>
<td>0.5 – 0.8</td>
<td>1.7 – 2.1</td>
<td>Iron, manganese reduction</td>
</tr>
<tr>
<td>Green Sand (coated sand)</td>
<td>1960</td>
<td>0.6 – 1.2</td>
<td>1.6 – 2.0</td>
<td>Iron & Manganese removal</td>
</tr>
<tr>
<td>BIRM media</td>
<td>800</td>
<td>9 TO 35 Mesh</td>
<td>1.96</td>
<td>Iron & Manganese removal</td>
</tr>
<tr>
<td>Activated alumina</td>
<td>750</td>
<td>4 to 6 mm</td>
<td>-</td>
<td>Fluoride, Arsenic reduction</td>
</tr>
</tbody>
</table>

- BIRM Media flow rate recommended is 8-9m³/h/m² area
- Oil, Hydrogen Sulfide – Not present
- Organic matter – Maximum 5 ppm
- Chlorine reduces BIRM activity
As filter removes more particles the area that will allow flow of water becomes smaller. A smaller cross sectional area means the velocity must increase to allow the same amount of water to pass. This results in higher head losses.

As velocity increases, the likelihood of scouring particles off the filter media becomes higher. This results in an increase in particles in the effluent. Called filter beak through.

If the head loss gets too high or the particle count in the treated water gets too high (measured by turbidity or particle count), the filter must be cleaned. The cleaning process is called filter Backwash.
OFFICE ADDRESS

VOICE +91 – 79 – 30086162 – 66 | FAX 91 – 79 – 30086163

HEAD OFFICE

A – 305, Shivalik Yash, Opp. Shastri Nagar BRTS, 132 Ft. Ring Road, Naranpura, AHMEDABAD, Gujarat – INDIA

VOICE +91 - 79 – 40086151 - 54 | FAX 91 - 79 -40086155

WORKS ADDRESS

Survey No. 481/2/3/1 , Gokul Hotel Lane, B/h Khodal Kathiyavadi Hotel, B/s One Shine Marbles, S. G, Highway Gota, AHMEDABAD, Gujarat – INDIA

E mail - info@shubahmindia.com